Extracción y caracterización físicoquímica del aceite obtenido de nueces del fruto de Agüire (*Couveia dolichopoda* Prance) en la zona de planicie amazónica, municipio de Solano - Caquetá.

Vladimir Sánchez Tovar⁴, Jaime Alberto Barrera García⁵

¹ Ing. Químico. Docente Facultad de Ciencias Básicas, Universidad de la Amazonía.
² Ing. Agrónomo. Investigador Instituto Amazonés de Investigaciones Científicas SINCHI. Florencia Caquetá.

Resumen

El Agüire (*Couveia dolichopoda* Prance) es una especie nativa del Amazonas que se distribuye entre Perú, Brasil y Colombia. Es un árbol de madera dura de frutos comestibles. A partir de la semilla se puede obtener aceite para la elaboración de tintas y barnices. En el laboratorio de alimentos de la Universidad de la Amazonía se utilizó este fruto proveniente de Solano Caquetá, para determinar el rendimiento de aceite y sus características físicoquímicas empleando tres tipos de solventes: Éter de petróleo, acetona y n-hexano, con el fin de brindar alternativas para su utilización y comercialización. La semilla tiene un contenido de aceite (74.46 %) utilizando acetona como solvente de extracción, y posee parámetros como índice de yodo similares al aceite de oliva y maní. Es importante en futuras investigaciones realizar estudios físicoquímicos del aceite obtenido por métodos de prensado.

Palabras clave: Aceite de almendra, nueces, extracción con solventes, industrialización.

Abstract

The Agüire (*Couveia dolichopoda* Prance) is a native specie of the Amazon that is distributed in Peru, Brazil and Colombia. It is a hard wooden tree of edible fruits. Oil to make inks and varnishes can be obtained from the seed. This fruit that comes from Solano, Caquetá was used at the Food Laboratory of the University of La Amazonia in order to determine the yield of the oil and physicochemical characteristics, by means of three types of solvents: Ether of petroleum, acetone and n-hexane. They were used to offer alternatives for the use and commercialization of the oil produced from Agüire. The seed has a high content of oil (74.46%) using acetone as extraction solvent and shows parameters as index of iodine, similar to peanut and olive oil. For further investigations, it is important to carry out physicochemical studies of the oil obtained by pressing methods.

Key words: Almond oil, nuts, extraction with solvents, industrialization.
Introducción

Las nueces son unos de los productos más apetecidos en el mercado internacional, el Agüire no solo puede ser consumido directamente del árbol sino que además presenta un gran potencial para ser transformado en harina, aceites o maderas (Acero, 1979; Maravalhias et al., 1965).

Es un árbol de estrato medio, que mide hasta 30 m de altura, su frutos maduros caen al suelo en época de cosecha, donde son recolectados, las almendras tienen alto contenido de un aceite comestible muy fino de color amarillo verdoso claro, muy susceptible a la oxidación; las poblaciones indígenas extraen este aceite para su consumo. Las nueces son extraídas del mesocarpio del fruto con relativa facilidad, ya que las fibras que lo envuelven son de sencilla penetración.

No se tienen datos de fenología en áreas silvestres, sin embargo, experiencias de plantaciones en Brasil reportan las primeras fructificaciones a los 4 o 5 años.

El uso primordial que se le ha dado es como nuez para consumo en fresco o tostado, aunque es muy poco probable encontraría en los mercados locales o extranjeros. Los residuos que quedan después de la extracción del aceite tienen un excelente sabor y un suave olor, un alto contenido de proteínas y es potencialmente útil en la dieta humana. Las almendras maceradas y mezcladas con harina de mandioca y azúcar pueden ser consumidas en una forma de envuelto o tortilla. La madera es especialmente dura, de color marrón oscuro y difícil de trabajar (Maravalhias et al., 1965; Rodríguez, 1976; Sampaio, 1993).

En esta investigación, se determinó la influencia del tipo de solvente utilizado en el rendimiento de extracción, y en las características fisicoquímicas del aceite, con el fin de dar alternativas y potenciales de uso.

Materiales y Métodos

Materia prima. En la experimentación se utilizaron frutos maduros de agüire recolectados directamente del suelo, sin importar tamaño, provenientes de Solano Caquetá. Las nueces se seleccionaron de frutos en buen estado en el laboratorio de nutrición y análisis de alimentos de la Universidad de la Amazonia en Florencia, Caquetá. En Figura 1 se ilustra el fruto de agüire, la nuez y un corte transversal; la almendra se obtuvo mediante prensado de la nuez, posteriormente se redujo de tamaño manualmente con tijeras.

![Nuez entera](image1)

![Corte transversal](image2)

Figura 1. Nuez de Agüire utilizada para caracterizar el aceite extraído por solventes

Extracción y caracterización del fruto de agüire
Secado de la almendra. El secado de la almendra se realizó en estufa a 75°C hasta peso constante, obteniéndose el porcentaje de materia seca.

Extracción del aceite de la almendra. La extracción del aceite de la almendra se realizó en base seca, se utilizó un sistema de extracción soxhlet, marca vidriequipos, de fabricación Colombiana, en el cual se permite el contacto entre la almendra y el solvente durante seis horas. (Bernal, 1994).

Diseño experimental. Se utilizó un diseño completamente al azar. En la extracción para cada tratamiento (Solvientes: éter de petróleo, Acetona y n-hexano) se realizaron tres repeticiones, utilizándose 250 g de nuez seca.

Utilizando técnicas estandarizadas de análisis de varianza se analizaron los resultados de las variables de respuesta. La obtención de los datos se facilitó con el uso del software STATISTICA Versión 5.0. El análisis de varianza se realizó con un nivel de confianza del 95% para todas las variables de respuesta. Los promedios se separaron con la prueba discriminatoria de Tukey.

Factores de variación medidos. Para cada extracción con los diferentes solventes se le realizaron análisis físicos y químicos del aceite de la nuez. En el análisis físico se determinaron los siguientes factores:

Rendimiento del proceso. Definido como la relación, en peso, entre el aceite obtenido y la cantidad de almendra seca utilizada en la extracción; multiplicada por 100.

Densidad. Para esta medida se utilizó un pipetómetro de 25 mL, previamente calibrado.

Índice de refracción. Se realizó en tres muestras por tratamiento. Se utilizó un refractómetro manual, marca Abbé, tomando lecturas entre 25 y 30°C.

En el análisis químico se midieron: Índice de Saponificación. Miligramos de KOH necesario para saponificar por completo 1 g de aceite, constituye una medida del peso molecular medio de los triglicéridos constitutivos.

Índice de Yodo. Cantidad de yodo absorbida por gramo de grasa o aceite, constituye una medida del grado de insaturación. Se aplicó el método de Hanus.

Índice de ácidos, o valor ácido. Miligramos de KOH requeridos para saturar los ácidos grasos libres en 1 g de muestra.

Índice de ésteres. Número de miligramos de base para la saponificación de los ésteres.

Resultados y Discusión

En la tabla 1, se presenta los resultados del análisis de las variables de respuesta a partir de los tres solventes empleados.

Rendimiento. Para los solventes éter de petróleo y n-hexano se presentan rendimientos menores (35,57 y 49,40 % respectivamente), que además son significativamente diferentes con respecto a la cantidad de aceite obtenido con acetona (72 %). Esto se debe a que la extracción depende de la afinidad del solvente con la sustancia deseada.

El aceite que tenía mejor apariencia (amarillo claro) fue el obtenido con éter de petróleo, y el de menor apariencia, fue el obtenido con el solvente acetona (amarillo oscuro).

Densidad. La densidad promedio fue de 0,963 g/mL independientemente del solvente utilizado.

Índice de refracción. El valor promedio para esta variable es de 1,3476 independientemente del solvente utilizado.

Índice de Saponificación. Se presentaron diferencias significativas entre los tratamientos para la variable de respuesta índice de saponificación. Lo cual implica que este parámetro depende del tipo de solvente empleado y la cantidad del mismo que pudo quedar atrapado en el aceite. Esto se vio reflejado en la apariencia final del producto y en su olor característico.

El rango obtenido de índice de saponificación utilizando los diferentes solventes fue de 137,3 a 152,99 mg de KOH/g de aceite.

Extracción y caracterización del fruto de agridulce
<table>
<thead>
<tr>
<th>Variables</th>
<th>Éter de petróleo</th>
<th>Solventes</th>
<th>n-Hexano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento (%)</td>
<td>39,57 c</td>
<td>74,46 a *</td>
<td>49,40 b</td>
</tr>
<tr>
<td>Densidad (g/mL)</td>
<td>0,963</td>
<td>0,963</td>
<td>0,964</td>
</tr>
<tr>
<td>Índice de refracción</td>
<td>1,3476</td>
<td>1,3476</td>
<td>1,3475</td>
</tr>
<tr>
<td>Índice de saponificación (mg de KOH/g de aceite)</td>
<td>142,28 ab</td>
<td>137,30 b</td>
<td>152,99 a *</td>
</tr>
<tr>
<td>Índice de Yodo (Hanus)</td>
<td>83,74 a *</td>
<td>78,94 a</td>
<td>79,26 a</td>
</tr>
<tr>
<td>Índice de acidez (mg de KOH/g de aceite)</td>
<td>6,24 a *</td>
<td>6,085 b</td>
<td>6,085 b</td>
</tr>
<tr>
<td>Índice de ésteres (mg de KOH/g de aceite)</td>
<td>117,23 a *</td>
<td>131,42 a</td>
<td>122,42 a</td>
</tr>
</tbody>
</table>

*Promedios seguidos por letras diferentes entre columnas, presentan diferencia estadística según la prueba de Tukey al 0,05.

Índice de Izado. No se encontraron diferencias significativas entre los tratamientos; se obtuvo un índice de yodo promedio de 80,65 mg de L/g de aceite, comparando estos valores con los reportados por Bernal 1994, se puede afirmar que el grado de insaturación es semejante al aceite de oliva (80-83) y al aceite de mant (83-103).

Índice de acidez. El índice de acidez fue estadísticamente idéntico para los aceites extraídos con acetona y n-hexano, el cual tuvo un valor promedio de 6,085 % de ácido oleico, mientras que el extraído con éter de petróleo tuvo un valor de 6,24 % de ácido oleico.

Índice de ésteres. No se presentaron diferencias significativas entre los tratamientos para la variable de respuesta índice de ésteres en las extracciones con solventes. Para la saponificación de los ésteres se requirieron 123,69 mg de KOH/g de aceite, en promedio.

Se recomienda realizar próximos trabajos de investigación en las cuales se comparan los parámetros fisiocquímicos del aceite extraído con solventes y el aceite extraído por prensado.

Literatura Citada

